Bounding the largest eigenvalue of trees in terms of the largest vertex degree∗

نویسنده

  • Dragan Stevanović
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

On the Average Eccentricity, the Harmonic Index and the Largest Signless Laplacian Eigenvalue of a Graph

The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc (G) of a graph G is the mean value of eccentricities of all vertices of G. The harmonic index H (G) of a graph G is defined as the sum of 2 di+dj over all edges vivj of G, where di denotes the degree of a vertex vi in G. In this paper, we determine the unique tree with minimum average...

متن کامل

Largest eigenvalues of the discrete p-Laplacian of trees with degree sequences

Trees that have greatest maximum p-Laplacian eigenvalue among all trees with a given degree sequence are characterized. It is shown that such extremal trees can be obtained by breadth-first search where the vertex degrees are non-increasing. These trees are uniquely determined up to isomorphism. Moreover, their structure does not depend on p.

متن کامل

Bounding the Domination Number of a Tree in Terms of Its Annihilation Number

A set S of vertices in a graph G is a dominating set if every vertex of V − S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we show that for a...

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002